
APIs, Stop Polling Let’s Go Streaming

Phil Wilkins

OCI

Feb 2023

Speaker

Phil Wilkins

Cloud Developer Evangelist

2 Copyright © 2023, Oracle and/or its affiliates

Philip.Wilkins@Oracle.com
http://bit.ly/odevrel_slack @Phil Wilkins - ORACLE

mp3monster.org / cloud-native.info / oracle-integration.cloud
linkedin.com/in/philwilkins
github.com/mp3monster
@mp3monster

http://mng.bz/jmzV
Code: ctwdevweek23

©Disney (under Fair Use)

Downsides of API Polling

• Too frequent …

• Unnecessary server effort repeating the same queries

• Too much load and risk of service degradation

• Each API call carries an overhead of initiating the exchange

• Network bandwidth consumption transmitting duplicated data

• If content refresh frequency can impact user experience – try to do something and the
data has already changed

• Too infrequent …

• Data received too late to be actionable

• User experience – application content not refreshing quickly enough, and users start
to force app refreshes – typically more costly!

• Amount of data that may need to be cached is a function of the polling interval

3 Copyright © 2023, Oracle and/or its affiliates

STOP
POLLING!

Before we go streaming, we need to consider …

• Security…

• Know who is getting what data

• Is data going to the requestor

• Satisfying consumer security needs (assurance
of legitimate origin when pushing events)

• Is the client consuming data…

• Recognizing consumer connection loss

• Consumer coping with data volume (back
pressure)

• Handling out-of-sequence or missing events

• Only receiving data they’re allowed to get
(events & attributes)

• API documentation…

• Open API Specification – not optimal for Async
/ Streaming API specifications

• Consumer enablement e.g. tech availability -
libraries, SDKs, etc.

• Cross charging / Monetization of APIs…

• How might the charging model work if we’re
pushing events?

• Controlling data serving costs e.g. not sending
events that aren’t needed/wanted

• Ease of development & maintenance

• How well is the technology understood

• Is the solution maintainable?

4 Copyright © 2023, Oracle and/or its affiliates

The Make-Up of a Good API

5 Copyright © 2023, Oracle and/or its affiliates

Le
ga

le
se

A
u

th
en

ti
ca

ti
o

n
 &

A

u
th

o
ri

za
ti

o
n

SD
K

Te
st

 F
ra

m
ew

o
rk

Common ‘Streaming’ API options …

6 Copyright © 2023, Oracle and/or its affiliates

• Web Hooks (Inverted APIs)

• Web Sockets

• Server Side Events

• GraphQL Subscriptions

• gRPC Streams

Trends on different Stream Techniques

7 Copyright © 2023, Oracle and/or its affiliates

Web
Sockets

Web
Hooks

The
Others!

Trends on different Stream Techniques

8 Copyright © 2023, Oracle and/or its affiliates

Trends on different Parent (Stream) Techniques

9 Copyright © 2023, Oracle and/or its affiliates

Web Sockets
• Web Sockets (WS) have been around 10-15 years and

formalized through IETF’s RFC6455

• There are a variety sub-protocols/specializations

• Some recognized by IANA2 e.g. STOMP & MQTT

• Custom sub-protocols – not recognized by IANA e.g.
something created yourself

• WS does have some challenges …

• It works at a lower level than REST (emphasis on TCP
rather than HTTP for traffic)

• Some organizations choose to prevent sockets – the
bidirectional nature means the risk of data egress.

• Not same origin restrictions enforced like HTTP

• Resource hungry – the socket is not multiplexed
between requests but dedicated to 1 client

• Need to recognize when the client has failed to close
properly to release resources.

10 Copyright © 2023, Oracle and/or its affiliates

Client Server

HTTP Handshake
Uses HTTP Upgrade Header

Bidirectional messages
Full duplex

Channel Closed by 1 side

Connection is
persistent

1 https://caniuse.com/websockets
2 https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

https://caniuse.com/websockets
https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

Load
Balancer??

Proxy?

Web Sockets
• More challenges …

• Some web proxies can’t differentiate between a WS
connection and a normal HTTP request in a ‘limbo’
state

• The conversation is stateful

• therefore, impact on managing load balancing etc.

• Depending on how data is exchanged over the socket –
may need to track conversation state

• The benefits …

• It is transient, so the client doesn’t have a
continuously open network port

• About 98% of browsers support WS today1

• Plenty of library implementations to ease the
workload

• Reduced overhead – 1 handshake until the
communication completes

11 Copyright © 2023, Oracle and/or its affiliates

Client Server

HTTP Handshake
Uses HTTP Upgrade Header

Bidirectional messages
Full duplex

Channel Closed by 1 side

Connection is
persistent

Server
Server

State
Cache

1 https://caniuse.com/websockets

function handleConnection(client, request) {

clients.push(client);

// add this client to the clients array

function endClient() {

var position = clients.indexOf(client);

clients.splice(position, 1);

console.log("connection closed"); }

function clientResponse(data) {

console.log(data); }

// set up client event listeners:

client.on('message', clientResponse);

client.on('close', endClient);

}

wss.on('connection', handleConnection);

Server side

var WebSocket = require('ws');
var ws = new WebSocket('ws://localhost:8992/');

ws.on('open', function open() {
data = …

// something happens & prep data
ws.send(data);

});

ws.on('error', function(error) {console.log(error);});

ws.on('message', function(data, flags) {
console.log('Server said: ' + data);});

12 Copyright © 2023, Oracle and/or its affiliates

var WebSocketServer = require('ws').Server;

const wssPort = process.env.PORT || 8080;

const wss = new WebSocketServer({port: wssPort});

var clients = new Array;

Client side

• Example uses Node.js with Web Socket library

Load
Balancer

Proxy

Server Sent Events
• Developed around 2006 - EventSource API is standardized

as part of HTML5

• Supported by all major browsers

• Process follows

• Client supplies the server with the URL

• Server calls the URL provided and sends a stream of
events.

• Once the server decides it is finished it closes the
connection.

• Unlike Sockets – is only 1 direction and only closed by the
server.

• No elegant means to perform heartbeat or event ack

• Does focus on HTTP level exchanges rather than TCP –
and gains the security restrictions

• More efficient than using long polling (call and wait for an
event)

13 Copyright © 2023, Oracle and/or its affiliates

Client Server

HTTP Request
response

One way messages

Close channel

Server
Server

State
Cache

Web Hook

• Web Hooks (WH) is half duplex (i.e. 1 end communicating
at a time)

• Client provides URI to be called on when something
happens – just like any other API call

• Some challenges …

• Client has a discoverable endpoint

• Security is better when information is pulled NOT
pushed

• If clients are transient, risk of someone else getting
the API call

• Expose endpoint for URL

• Some benefits …

• Simple to implement

• Security management approaches can help protect
clients, e.g., client registers with a key to be used
when called

• Easier to load balance, exploit common OOTB
services such as an API Gateway for outbound to
track data (audit, attach security creds etc)

14 Copyright © 2023, Oracle and/or its affiliates

Client API Server

Register Endpoint

Client endpoint invoked
when needed

Server

API Server

Deregister Endpoint

Registrations
Cache

Load
Balancer

Web Hook

• Improve security through API Gateway

• Audit outbound traffic

• Authenticate transmission request (egress
authorization)

• Attach client-provided credentials to outbound
traffic

• Out of the box features

15 Copyright © 2022, Oracle and/or its affiliates

Client API Server

Register Endpoint

Server

API Server

Deregister Endpoint

Registrations
Cache

API Server

Client endpoint invoked
when needed

Load
Balancer

Proxy

GraphQL Subscriptions

• GraphQL Subscriptions (GQL Subs) defines how
subscriptions should functionally work – but not how to
implement

• Different implementations may use different
strategies, but WS is the most common

• Benefits of GQL Subs…

• Same benefits as a GQL request (tailored data set,
option for attribute level access controls, etc.)

• Lower-level mechanisms abstracted

• Challenges of GQL Subs …

• Lot of work on the server – the ability to build cached
answers for all harder

• Need to consider potential variance or custom sub-
protocols imposing client constraints

16 Copyright © 2023, Oracle and/or its affiliates

Client Server

Register subscription
(connection initialize)

Event(s) Pushed

Subscription Closed
by 1 side

Server
Server

State
Cache

HTTP Handshake

Connection ack

Other msgs e.g. event acks

H
TT

P
Ty

p
ic

al
ly

 a
 W

eb
So

ck
et

GraphQL – Basic Query

• Schemas with strong typing

• Schemas can define multiple entities

• Schemas support the idea of abstraction through
interfaces

• Different entities can be linked via common
attributes

17 Copyright © 2023, Oracle and/or its affiliates

Droid implements
Character
{ id: ID!
name: String!
friends: [Character]
appearsIn: [Episode]!
primaryFunction:

String
}

interface Character
{ id: ID!
name: String!
friends:

[Character]
appearsIn:

[String]!
}

{
"data":
{
"droid":
{
"name": "C-3PO“
“primaryFunction”:

“Interpreter”
}
}
}

Query
{

droid(id: "2000")

{

name,
primaryFunction

}

}

type Query {droid(id: ID!): Droid }
type Mutation {deleteDroid(id: ID!)
type Mutation (addDroid(newDroid: Droid!} • Schemas can define different types of operations

• Query → get

• Mutations → insert / update / delete

• Subscriptions → live query

• Operations can then be used

• Operations can define the attributes to
use/retrieve

Based on:https://github.com/graphql/swapi-graphql

https://github.com/graphql/swapi-graphql

GraphQL – Subscription

• Subscription much like a query

• Primary difference is we’re also stipulating what we
want as the query when data changes.

Copyright © 2023, Oracle and/or its affiliates

Droid implements
Character
{ id: ID!
name: String!
friends: [Character]
appearsIn: [Episode]!
primaryFunction:

String
}

interface Character
{ id: ID!
name: String!
friends:

[Character]
appearsIn:

[String]!
}

type Query {droid(id: ID!): Droid }
type subscription (characterUpdate(id: ID!}
{onCharacterUpdated(id : ID)

{
id: ID!
name: String!

}
}

Based on:https://github.com/graphql/swapi-graphql

https://github.com/graphql/swapi-graphql

gRPC Streams

• HTTP/2 foundation escape constraints of HTTP 1.x

• Multiple streams per connection

• Enabled by different flow control
implementation

• Greater network level efficiencies

• Header compression & security mechanisms

• Parallelism can be achieved

• Ability to have half or full duplex depending on
needs

• HTTP/2 does have challenges

• Does require infrastructure/software stack to
support HTTP/2

• Monitoring of HTTP/2 is harder to implement

• Streams can’t be load balanced, so connectivity
needs to be intelligently distributed when
establishing the handshake/request

19 Copyright © 2023, Oracle and/or its affiliates

Client ServerServer
Server

State
Cache

gRPC request

Se
rv

er
 p

u
sh

ed

u
n

ia
ry

st
re

am

Event(s) Pushed

Summary record

Stream Closed

ack

gRPC request

Event(s) Pushed

C
lie

n
t

p
u

sh
ed

u

n
ia

ry
st

re
am

Summary record

Stream Closed

ack

gRPC request

Event(s) Pushed

Stream ClosedB
id

ir
ec

ti
o

n
al

 e
ve

n
t

st
re

am

ack

gRPC Expression

• The same considerations of normal data structure
definitions still apply – streaming or otherwise

• The RPC definitions in Protobuf 2 & 3 define
whether the invocation will stream

• The stream initiation can include metadata
controlling the life of the stream (e.g. use of
setting a deadline to receive the data)

• API design needs to consider whether the stream
uses strategies like ping-pong to manage the
delivery of messages

Copyright © 2023, Oracle and/or its affiliates Based on:https://github.com/graphql/swapi-graphql

• The only difference between single calls and
streams is the keyword stream in the rpc definition

• Position of stream in the rpc will dictate half or full
duplex

message Droid
{
Id id = 1;
string

primaryFunction =2;
Character character =

3;
}

message Ids {
repeated uint32 id =

1;}

syntax = "proto3";

message Id {
uint32 id = 1;}

message Character {
Id id =1;
string name =2;
repeated string

appearsIn =3;
repeated Character

friends =4;
}

service GetService
{
rpc getDroidById (Id) returns (Droid) {}
rpc setCharacter (Character) {}
rpc getCharacters () returns (stream

Character) {}
rpc shareCharacters (stream Character)
returns (stream Character) {}

}

https://github.com/graphql/swapi-graphql

Summary / Recommendations

21 Copyright © 2023, Oracle and/or its affiliates

Web Hooks Web Sockets Server Sent Events (SSE) GraphQL
Subscriptions

gRPC Streams

Pros • Technically simple &
proven

• Lowest common
denominator

• Each message can be
ack’d to server in HTTP
response

• Well supported
• Same connection for

bidirectional traffic
• Should consider SDK to

mask serialization

• Single direction calls
• More efficient than

webhooks for multiple
events

• All the power of
selective data
from GraphQL

• Often (not always)
implemented
using WebSockets

• Bi-directional

• Very efficient
• Easy to express

once you know
gRPC

• Exploits HTTP/2
performance

• Single or
bidirectional flow

Cons • Not very efficient
• Client exposed

endpoint for inbound
calls

• More work as having to
(de)serialize payloads

• Lose some HTTP level
security

• Not so commonly used
• Client exposed

endpoint for server to
call

• No means to ack each
message

• Potential for
differences in
implementation –
ideally provide
client with
additional info or
SDK

• Client needs to
have correct code
frame

• Needs HTTP/2

Useful Background resources

Streaming API Application

• Why Oracle Hospitality adopted streaming APIs -
https://bit.ly/OHIPStreamingWhy

• How Oracle Hospitality decided on their streaming
technology - https://bit.ly/OHIPStrategy

• JavaScript and Oracle Database subscribe to data
changes - https://bit.ly/DBChangeSubscriptions

• Oracle Content Management uses GraphQL
https://bit.ly/GraphQLOCM

Technology Resources

• Web Socket Examples using Node.js frameworks -
https://tigoe.github.io/websocket-examples/

• Documentation on different Streaming
mechanisms https://ably.com/

• Async API specification -
https://www.asyncapi.com/docs

22 Copyright © 2023, Oracle and/or its affiliates

https://bit.ly/OHIPStreamingWhy
https://bit.ly/OHIPStrategy
https://bit.ly/DBChangeSubscriptions
https://bit.ly/GraphQLOCM
https://tigoe.github.io/websocket-examples/
https://ably.com/
https://www.asyncapi.com/docs

23

To be activated for this special promo:
• Join our Public Slack Workspace and contact me

Always Free
Services you can use for unlimited time

Free credits you can use for additional OCI services
300$ 500$ in Oracle Cloud Credits

+
30-Day Free Trial

Oracle Cloud Free Tier – Special Promo
Try Always Free. No Time Limits.

24

oracledevrel.slack.com

Join the dedicated Slack channel to be part of
the conversation and raise your questions to our
Experts:

Step 1: Access the Slack OracleDevRel
Workspace following this link:
http://bit.ly/odevrel_slack

Step 2: Search for Phil Wilkins - ORACLE
philip.wilkins@oracle.com

Join our public Oracle DevRel Workspace

OCI Architecture Center -- Free Content & More
URLS are https://oracle.com/goto/...

Reference
Architectures

GitHub - DevRel

/ref-archs

Playbooks

/playbooks /gh-devrel/deployed

Built & Deployed Live Labs

/labs

Tutorials

/tutorial

Blogs

Developer Open Source

Learning Videos Apex PaaS Community

GitHub - Oracle

/gh-oracle

Cloud Customer
Connect

/connect

/open/dev

/paas/apex/blog/youtube

Oracle Community

/community

GitHub - Samples

/gh-samples

URLS are https://oracle.com/goto/...
or https://blog.mp3monster.org/oracle-resources/

https://oracle.com/goto/gh-devrel
https://oracle.com/goto/ref-archs
https://oracle.com/goto/gh-devrel
https://oracle.com/goto/ref-archs
https://oracle.com/goto/ref-archs
https://apex.oracle.com/
https://oracle.com/goto/playbooks
https://oracle.com/goto/playbooks
https://oracle.com/goto/playbooks
https://oracle.com/goto/gh-devrel
https://oracle.com/goto/deployed
https://oracle.com/goto/deployed
https://oracle.com/goto/bd
https://oracle.com/goto/deployed
https://oracle.com/goto/labs
https://oracle.com/goto/labs
https://oracle.com/goto/labs
https://oracle.com/goto/labs
https://oracle.com/goto/tutorials
https://oracle.com/goto/tutorials
https://oracle.com/goto/blog
https://oracle.com/goto/dev
https://oracle.com/goto/open
https://oracle.com/goto/youtube
https://apex.oracle.com/
https://www.oracle.com/goto/paas
https://oracle.com/goto/gh-oracle
https://oracle.com/goto/gh-oracle
https://oracle.com/goto/gh-oracle
https://www.oracle.com/goto/connect
https://oracle.com/goto/Connect
https://www.oracle.com/goto/connect
https://oracle.com/goto/open
https://oracle.com/goto/open
https://oracle.com/goto/dev
https://oracle.com/goto/dev
https://oracle.com/goto/tutorials
https://oracle.com/goto/playbooks
https://oracle.com/goto/youtube
https://oracle.com/goto/blog
https://www.oracle.com/goto/paas
https://www.oracle.com/goto/paas
https://apex.oracle.com/
https://oracle.com/goto/blog
https://oracle.com/goto/youtube
https://oracle.com/goto/community
https://oracle.com/goto/community
https://oracle.com/goto/community
https://oracle.com/goto/community
https://oracle.com/goto/gh-samples
https://oracle.com/goto/gh-samples
https://oracle.com/goto/gh-samples
https://oracle.com/goto/

Questions / Thank you

Copyright © 2023, Oracle and/or its affiliates

Phil Wilkins

Cloud Developer Evangelist
Philip.Wilkins@Oracle.com
bit.ly/devrel-slack-emea @Phil Wilkins

mp3monster.org / cloud-native.info / oracle-integration.cloud
linkedin.com/in/philwilkins
github.com/mp3monster
@mp3monster

	Slide 1: APIs, Stop Polling Let’s Go Streaming
	Slide 2: Speaker
	Slide 3: Downsides of API Polling
	Slide 4: Before we go streaming, we need to consider …
	Slide 5: The Make-Up of a Good API
	Slide 6: Common ‘Streaming’ API options …
	Slide 7: Trends on different Stream Techniques
	Slide 8: Trends on different Stream Techniques
	Slide 9: Trends on different Parent (Stream) Techniques
	Slide 10: Web Sockets
	Slide 11: Web Sockets
	Slide 12: Server side
	Slide 13: Server Sent Events
	Slide 14: Web Hook
	Slide 15: Web Hook
	Slide 16: GraphQL Subscriptions
	Slide 17: GraphQL – Basic Query
	Slide 18: GraphQL – Subscription
	Slide 19: gRPC Streams
	Slide 20: gRPC Expression
	Slide 21: Summary / Recommendations
	Slide 22: Useful Background resources
	Slide 23
	Slide 24
	Slide 25: OCI Architecture Center -- Free Content & More URLS are https://oracle.com/goto/...
	Slide 27: Questions / Thank you
	Slide 28

