ORACLE

APIs, Stop Polling Let’s Go Streaming

Phil Wilkins
OCl
Feb 2023

Speaker

—suwy O §F N Phil Wilkins

loud Service ‘ M g
W Wil iy .

Cloud Developer Evangelist

el i - E Philip.Wilkins@Oracle.com
- http://bit.ly/odevrel_slack @Phil Wilkins - ORACLE

0
http //m ng' bZ/J mzV mm mp3monster.org / cloud-native.info / oracle-integration.cloud
Code: ctwdevweek23 linkedin.com/in/philwilkins

github.com/mp3monster

2 Copyright © 2023, Oracle and/or its affiliates @mp3monster O

Downsides of API Polling

* Too frequent ...
* Unnecessary server effort repeating the same queries
e Too much load and risk of service degradation
e Each API call carries an overhead of initiating the exchange
* Network bandwidth consumption transmitting duplicated data

* If content refresh frequency can impact user experience — try to do something and the
data has already changed

STOP

POLLING!

* Tooinfrequent ...
* Data received too late to be actionable
e User experience — application content not refreshing quickly enough, and users start
to force app refreshes — typically more costly!
 Amount of data that may need to be cached is a function of the polling interval

3 Copyright © 2023, Oracle and/or its affiliates

Before we go streaming, we need to consider ...

4

Security...
* Know who is getting what data
* Is data going to the requestor

» Satisfying consumer security needs (assurance
of legitimate origin when pushing events)

Is the client consuming data...
* Recognizing consumer connection loss

* Consumer coping with data volume (back
pressure)

* Handling out-of-sequence or missing events

* Only receiving data they’re allowed to get
(events & attributes)

Copyright © 2023, Oracle and/or its affiliates

e APl documentation...

* Open API Specification — not optimal for Async
/ Streaming API specifications

 Consumer enablement e.g. tech availability -
libraries, SDKs, etc.

* Cross charging / Monetization of APIs...

* How might the charging model work if we’re
pushing events?

* Controlling data serving costs e.g. not sending
events that aren’t needed/wanted

* Ease of development & maintenance
 How well is the technology understood

e |s the solution maintainable?

The Make-Up of a Good API

Legalese
Authentication &
Authorization

X
—
(@)
=
()
S
©
—
L
o+
0
|_

5 Copyright © 2023, Oracle and/or its affiliates

Common ‘Streaming’ API options ...

 Web Hooks (Inverted APIs)
* Web Sockets

* Server Side Events

e GraphQL Subscriptions

* gRPC Streams

6 Copyright © 2023, Oracle and/or its affiliates

Trends on different Stream Techniques

® server side events ® gRPC Stream GraphQL subscripti... ® webhook ® websocket
Search term Search term Search term Search term Search term
Worldwide Past Syears « Computers & Electronics ¥ Web Search ~

> <

Interest over time

| €=

Web
Sockets

-v_"_“_“é L | ——— % v e e e o e A, o __"‘__A_._‘ L e e e il e em e e o e e e o e— e i e v e— el
25Feb 2018 10 Nov 2019 25 Jul 2021
7 Copyright © 2023, Oracle and/or its affiliates E

Trends on different Stream Techniques

® server side events ® gRPC Stream © GraphQL subscript... + Add :

Search term Search term Search term comparison
Worldwide Past Syears ¥ Computers & Electronics ¥ Web Search ¥
Interest over time ¥ o<

TN
mlln MMMMMJIMMMWMMMWMMB |

Average 25Feb 2018 10 Nov 2019 25 Jul 2021

8 Copyright © 2023, Oracle and/or its affiliates

Trends on different Parent (Stream) Techniques

® gRPC GraphQL
: Searfhterm + Add comparison

® server side events
Search term

Search term

Computers & Electronics ¥ Web Search ¥

Worldwide Past Syears ¥

<> <

| ¢

Interest over time

Note

P . Ny -
25Feb 2018 10 Nov 2019

I A P PP ——_ o, DU PPy N - P - v v .
25 Jul 2021

Average

9 Copyright © 2023, Oracle and/or its affiliates

Web Sockets

* Web Sockets (WS) have been around 10-15 years and
formalized through IETF’s RFC6455

* There are a variety sub-protocols/specializations
* Some recognized by IANA? e.g. STOMP & MQTT

* Custom sub-protocols — not recognized by IANA e.g.
something created yourself

* WS does have some challenges ...

* It works at a lower level than REST (emphasis on TCP
rather than HTTP for traffic)

 Some organizations choose to prevent sockets — the
bidirectional nature means the risk of data egress.

* Not same origin restrictions enforced like HTTP

* Resource hungry — the socket is not multiplexed
between requests but dedicated to 1 client

* Need to recognize when the client has failed to close
properly to release resources.

10 Copyright © 2023, Oracle and/or its affiliates

Client

~ HTTP Handshake
~ Uses HTTP Upgrade Header

_ Bidirectional messages
Full duplex i

Connection is
persistent

Channel Closed by 1 side

1 https://caniuse.com/websockets
2 https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

https://caniuse.com/websockets
https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

Web Sockets

* More challenges ...

 Some web proxies can’t differentiate between a WS

connection and a normal HTTP request in a ‘limbo’ Client Load
state Balancer??
* The conversation is stateful LTTP Handshake

P

~ Uses HTTP Upgrade Header

* therefore, impact on managing load balancing etc.

* Depending on how data is exchanged over the socket —
may need to track conversation state

* The benefits ...

* |tistransient, so the client doesn’t have a
continuously open network port

_ Bidirectional messages
Full duplex

* About 98% of browsers support WS today*

Connection is U

* Plenty of library implementations to ease the persistent
workload Proxy?
* Reduced overhead — 1 handshake until the
communication completes)
Channel Closed by 1 side

L https://caniuse.com/websockets

11 Copyright © 2023, Oracle and/or its affiliates

Server side

var WebSocketServer = require('ws').Server;

const wssPort = process.env.PORT || 8080;

const wss = new WebSocketServer({port: wssPort});
var clients = new Array;

function handleConnection(client, request) {
clients.push(client);
/[add this client to the clients array

function endClient() {
var position = clients.indexOf(client);
clients.splice(position, 1);
console.log("connection closed"); }

function clientResponse(data) {
console.log(data); }

// set up client event listeners:
client.on('message’, clientResponse);
client.on('close’, endClient);

}

12 wss.on('connection’, handleConnection);

Client side

var WebSocket = require(‘ws");
var ws = new WebSocket(‘ws://localhost:8992/');

ws.on('open’, function open() {
data = ...

I/l something happens & prep data
ws.send(data);

D;
ws.on(‘error’, function(error) {console.log(error);});

ws.on(‘message’, function(data, flags) {
console.log('Server said: ' + data);});

 Example uses Node.js with Web Socket library

Copyright © 2023, Oracle and/or its affiliates

Server Sent Events

13

Developed around 2006 - EventSource APl is standardized
as part of HTML5

e Supported by all major browsers
Process follows
* Client supplies the server with the URL

e Server calls the URL provided and sends a stream of
events.

* Once the server decides it is finished it closes the
connection.

Unlike Sockets —is only 1 direction and only closed by the
server.

* No elegant means to perform heartbeat or event ack

Does focus on HTTP level exchanges rather than TCP —
and gains the security restrictions

More efficient than using long polling (call and wait for an
event)

Copyright © 2023, Oracle and/or its affiliates

Client

Load
Balancer

HTTP Request

response

One way messages f

Proxy

Close channel

Web Hook

14

Web Hooks (WH) is half duplex (i.e. 1 end communicating
at a time)

Client provides URI to be called on when something
happens — just like any other API call

Some challenges ...
e Client has a discoverable endpoint

e Security is better when information is pulled NOT
pushed

e If clients are transient, risk of someone else getting
the API call

* Expose endpoint for URL
Some benefits ...
* Simple to implement

« Security management approaches can help protect
clients, e.g., client registers with a key to be used
when called

e Easier to load balance, exploit common OOTB
services such as an APl Gateway for outbound to

track data (audit, attach security creds etc)
Copyright © 2023, Oracle and/or its affiliates

oA

Client A r
_Register Endpoint]
Client endpoint invoked G
when needed
Deregister Endpoint
A r

Web Hook

* Improve security through APl Gateway
e Audit outbound traffic

* Authenticate transmission request (egress
authorization)

e Attach client-provided credentials to outbound
traffic

e Qut of the box features

15 Copyright © 2022, Oracle and/or its affiliates

Load
Balancer

Client

Register Endpoint

r

ndpoint invoked N
>4
hen needed

Deregister Endpoint

<

A

GraphQL Subscriptions

e GraphQL Subscriptions (GQL Subs) defines how -) Load
subscriptions should functionally work — but not how to ||: Client Balancer
implement I HTTP Handshake

e Different implementations may use different -
strategies, but WS is the most common
» Benefits of GQL Subs... o Register subscription
. . 9 (connection initialize)
* Same benefits as a GQL request (tailored data set, g
option for attribute level access controls, etc.) . Connection ack
° - i v
Lower-level mechanisms abstracted = Event(s) Pushed
e Challenges of GQL Subs ... ‘; B
* Lot of work on the server — the ability to build cached w
answers for all harder é Other msgs e.g. event acks
>
* Need to consider potential variance or custom sub- = Proxy
protocols imposing client constraints

Subscription Closed
by 1 side

16 Copyright © 2023, Oracle and/or its affiliates

GraphQL — Basic Query

interface Character Droid implements

{ id: ID! Character

name: String! { id: ID!

friends: name: String!
[Character] friends: [Character]

appearsIn: appearsIn: [Episode]!
[String]! primaryFunction:
} String

}

type Query {droid(id: ID!): Droid }
type Mutation {deleteDroid(id: ID!)
type Mutation (addDroid(newDroid: Droid!}

Query {
{ "data":
droid(id: "2000") {
{ "droid":
name ! { " 1] n "
primaryFunction name” : "C-3PO
} “primaryFunction”:
}
“Interpreter”
}
}
Y

17 Copyright © 2023, Oracle and/or its affiliates

Schemas with strong typing
Schemas can define multiple entities

Schemas support the idea of abstraction through
interfaces

Different entities can be linked via common
attributes

Schemas can define different types of operations
* Query = get
» Mutations =2 insert / update / delete

* Subscriptions =2 live query
Operations can then be used

Operations can define the attributes to
use/retrieve

Based on:https://github.com/graphql/swapi-graphal

https://github.com/graphql/swapi-graphql

GraphQL — Subscription @

interface Character Droid implements « Subscription much like a query

{ id: ID! Character
name: String! { id: ID! * Primary difference is we’re also stipulating what we
friends: TEIRE S, want as the query when data changes.
[Character] friends: [Character]
appearsIn: appearsIn: [Episode]!
[String]! primaryFunction:
} String
b

uery {droid(id: ID!): Droid }

{onCharacterUpdated(id : ID)

{
id: ID!
name: String!
}
}

_ J

Copyright © 2023, Oracle and/or its affiliates Based on:https://github.com/graphqgl/swapi-graphaql

https://github.com/graphql/swapi-graphql

Ng

G RPC%@

gRPC Streams 8

gRPC request
ack

Event(s) Pushed \J

Summary record

* HTTP/2 foundation escape constraints of HTTP 1.x
* Multiple streams per connection

>

A

Server pushed
uniary stream

* Enabled by different flow control
implementation

Stream Closed

gRPC request
< ack

<

\J Event(s) Pushed
Summary record

* Greater network level efficiencies

* Header compression & security mechanisms

e Parallelism can be achieved

Client pushed
uniary stream
I\

e Ability to have half or full duplex depending on
needs

 HTTP/2 does have challenges

* Does require infrastructure/software stack to
support HTTP/2

* Monitoring of HTTP/2 is harder to implement

Stream Closed

gRPC request
ack

N

7 Event(s) Pushed

* Streams can’t be load balanced, so connectivity b
needs to be intelligently distributed when - Stream Closed
establishing the handshake/request

19 Copyright © 2023, Oracle and/or its affiliates

Bidirectional event
stream

Ng

gRPC Expression tGRPC—:@'
syntax = "proto3";
§ Tessage Droid * The same considerations of normal data structure
message [N/ - N ; :
uint32 id = 1:} Id id = 1: definitions still apply — streaming or otherwise
string The RPC definitions in Protobuf 2 & 3 define
message Character { primaryFunction =2; whether the invocation will stream
Id id =1; Character character =
string name =2; 3;
TEDEEEEe ST ; * The stream initiation can include metadata
appearsin =3; controlling the life of the stream (e.g. use of
repeated Character message Ids { . il = ; -8
friends =4: repeated uint32 id = setting a deadline to receive the data)
} 1;} v

API design needs to consider whether the stream
uses strategies like ping-pong to manage the
delivery of messages

service GetService i J
{ * The only difference between single calls and
rpc getDroidById (Id) returns (Droid) {} streams is the keyword stream in the rpc definition

rpc setCharacter (Character) | g N\ . ==
rpc getCharacters () returns (Stream) Position of stream in the rpc will dictate half or full

Character) {} duplex
rpc shareCharacters (Character)
returns w Character) {}

Copyright © 2023, Oracle and/or its affiliates Based on:https://github.com/graphgl/swapi-graphgl E

https://github.com/graphql/swapi-graphql

Summary / Recommendations

Web Hooks Web Sockets Server Sent Events (SSE) GraphQlL gRPC Streams
Subscriptions

Pros * Technically simple & * Well supported * Single direction calls * Allthe power of e Very efficient
proven e Same connection for * More efficient than selective data * Easy to express
* Lowest common bidirectional traffic webhooks for multiple from GraphQL once you know
denominator e Should consider SDK to events e Often (not always) gRPC
e Each message can be mask serialization implemented * Exploits HTTP/2
ack’d to server in HTTP using WebSockets performance
response * Bi-directional e Single or

bidirectional flow

Cons * Not very efficient * More work as havingto * Notsocommonlyused < Potential for * C(Client needs to
* Client exposed (de)serialize payloads * Client exposed differences in have correct code
endpoint for inbound Lose some HTTP level endpoint for server to implementation — frame
calls security call ideally provide * Needs HTTP/2
* No means to ack each client with
message additional info or
SDK

21 Copyright © 2023, Oracle and/or its affiliates

Useful Background resources

Streaming API Application

22

Why Oracle Hospitality adopted streaming APlIs -
https://bit.ly/OHIPStreamingWhy

How Oracle Hospitality decided on their streaming
technology - https://bit.ly/OHIPStrategy

JavaScript and Oracle Database subscribe to data
changes - https://bit.ly/DBChangeSubscriptions

Oracle Content Management uses GraphQL
https://bit.ly/GraphQLOCM

Copyright © 2023, Oracle and/or its affiliates

Technology Resources

Web Socket Examples using Node.js frameworks -
https://tigoe.github.io/websocket-examples/

Documentation on different Streaming
mechanisms https://ably.com/

Async API specification -
https://www.asyncapi.com/docs

https://bit.ly/OHIPStreamingWhy
https://bit.ly/OHIPStrategy
https://bit.ly/DBChangeSubscriptions
https://bit.ly/GraphQLOCM
https://tigoe.github.io/websocket-examples/
https://ably.com/
https://www.asyncapi.com/docs

Oracle Cloud Free Tier — Special Promo

Services you can use for unlimited time

Free credits you can use for additional OCI services
300$ 500S in Oracle Cloud Credits

To be activated for this special promo:

Join our public Oracle DevRel Workspace

== slack
oracledevrel.slack.com

Join the dedicated Slack channel to be part of
the conversation and raise your questions to our
Experts:

s irrational as
you make it. Explore gaming hacks, full-stack cloud demos, NBA analytics, and
more
Save 14,2022

Step 1: Access the Slack OracleDevRel @
Workspace following this link:
http://bit.ly/odevrel_slack

Step 2: Search for Phil Wilkins - ORACLE
philip.wilkins@oracle.com

24

Reference

OCI Architecture Center -- Free Content & More

URLS are https://oracle.com/goto/...

. . Tutorials GitHub - DevRel
Architectures FETBRIE Built & Deployed Live Labs
= m
5 b ilj e\t @ 8] (’
— > —
C—] BHE: —
[ref-archs /playbooks /deployed /labs [tutorial [gh-devrel
GitHub - Samples Developer Open Source GitHub - Oracle
. —
Zl<ss|!
/gh-samples /dev /open h-oracle
Oracle Community | Learning Videos Blogs Apex PaaS Community Cloud Customer
=) Q Connect
&y 18, o N & @ -
Xl Ix1 ¥
/community /youtube blo /apex [paas /connect

URLS are https://oracle.com/goto/...

or https.//blog.mp3monster.org/oracle-resources/

https://oracle.com/goto/gh-devrel
https://oracle.com/goto/ref-archs
https://oracle.com/goto/gh-devrel
https://oracle.com/goto/ref-archs
https://oracle.com/goto/ref-archs
https://apex.oracle.com/
https://oracle.com/goto/playbooks
https://oracle.com/goto/playbooks
https://oracle.com/goto/playbooks
https://oracle.com/goto/gh-devrel
https://oracle.com/goto/deployed
https://oracle.com/goto/deployed
https://oracle.com/goto/bd
https://oracle.com/goto/deployed
https://oracle.com/goto/labs
https://oracle.com/goto/labs
https://oracle.com/goto/labs
https://oracle.com/goto/labs
https://oracle.com/goto/tutorials
https://oracle.com/goto/tutorials
https://oracle.com/goto/blog
https://oracle.com/goto/dev
https://oracle.com/goto/open
https://oracle.com/goto/youtube
https://apex.oracle.com/
https://www.oracle.com/goto/paas
https://oracle.com/goto/gh-oracle
https://oracle.com/goto/gh-oracle
https://oracle.com/goto/gh-oracle
https://www.oracle.com/goto/connect
https://oracle.com/goto/Connect
https://www.oracle.com/goto/connect
https://oracle.com/goto/open
https://oracle.com/goto/open
https://oracle.com/goto/dev
https://oracle.com/goto/dev
https://oracle.com/goto/tutorials
https://oracle.com/goto/playbooks
https://oracle.com/goto/youtube
https://oracle.com/goto/blog
https://www.oracle.com/goto/paas
https://www.oracle.com/goto/paas
https://apex.oracle.com/
https://oracle.com/goto/blog
https://oracle.com/goto/youtube
https://oracle.com/goto/community
https://oracle.com/goto/community
https://oracle.com/goto/community
https://oracle.com/goto/community
https://oracle.com/goto/gh-samples
https://oracle.com/goto/gh-samples
https://oracle.com/goto/gh-samples
https://oracle.com/goto/

s =T LTIz \\\\\W W ‘“J\

N

—

Questions / Thank you

Phil Wilkins -
\\
Cloud Developer Evangelist %\
Philip.Wilkins@Oracle.com \.

bit.ly/devrel-slack-emea @Phil Wilkins

4
A

@mp3monster

Copyright © 2023, Oracle and/or its affiliates f’é_é/j e
—-/

0 \ Nl
E mp3monster.org / cloud-native.info / oracle-integration.cloud \ 4 e '
. .) o 7 1
linkedin.com/in/philwilkins . / 1L o ‘
github.com/mp3monster \ : . ///’ .
-

ORACLE

	Slide 1: APIs, Stop Polling Let’s Go Streaming
	Slide 2: Speaker
	Slide 3: Downsides of API Polling
	Slide 4: Before we go streaming, we need to consider …
	Slide 5: The Make-Up of a Good API
	Slide 6: Common ‘Streaming’ API options …
	Slide 7: Trends on different Stream Techniques
	Slide 8: Trends on different Stream Techniques
	Slide 9: Trends on different Parent (Stream) Techniques
	Slide 10: Web Sockets
	Slide 11: Web Sockets
	Slide 12: Server side
	Slide 13: Server Sent Events
	Slide 14: Web Hook
	Slide 15: Web Hook
	Slide 16: GraphQL Subscriptions
	Slide 17: GraphQL – Basic Query
	Slide 18: GraphQL – Subscription
	Slide 19: gRPC Streams
	Slide 20: gRPC Expression
	Slide 21: Summary / Recommendations
	Slide 22: Useful Background resources
	Slide 23
	Slide 24
	Slide 25: OCI Architecture Center -- Free Content & More URLS are https://oracle.com/goto/...
	Slide 27: Questions / Thank you
	Slide 28

