
Monoliths in a Microservices World

Phil Wilkins
OCI
May 2023

Speaker

Phil Wilkins
Cloud Developer Evangelist

2

Philip.Wilkins@Oracle.com
https://bit.ly/devrel-slack-emea @Phil Wilkins

mp3monster.org / cloud-native.info / oracle-
integration.cloud
linkedin.com/in/philwilkins
github.com/mp3monster
@mp3monster

What is the driver for
µ-services?

Development simplicity?

5 Copyright © 2023, Oracle and/or its affiliates

• Both approaches have complexity/
overhead for …
• Monitoring
• Repos & deployment
• Container/host configuration

• µ-service requires additional effort …
• Storage – persistent volumes, etc
• Configs for deployment, pod

definitions, config maps…
• Automation to exploit container

orchestration benefits
• µ-service simplicity comes with scale

when…
• workload is shared or re-usable
• Automation is built & maintained

Host Servers
Bare Metal with a
hypervisor or just a
cluster of servers
with an OS such as
Linux

Container Mgmt &
Orchestration

Kubernetes / Istio
Microservice Mesh
/ Mesos etc

ContainerContainer Container solution
such as Docker

App Svr App Svr
Simple server
process to execute
app logic e.g.
Apache

Service

Service

Service

Application Logic –
discrete
unconnected
solutions and
potentially Polyglot
in nature

µ-services

App Server /
Runtime
Platform

App

Enterprise class
app server

offering many
features such as
WebLogic – very
capable but also

very complex.
Large footprint
unless stripped

down

App – multiple
Jars running on

a single OS
process that is
multithreaded

Host
Servers

Monolith

Question – does something need simplifying, when should we introduce more abstraction?

To m
ake a

change safely I
need to understand all of this

W
hen at scale

specialism
 allow

s this

To make a
change safely I

need to
understand all

of this

Greater productivity?

• Martin Fowler made the case that the
benefit of µ-service relates to the
underlying solution complexity

• Gartner has posited the idea of µ-apps
as a trade-off
• Less fine-grained than µ-services
• Leverage containerization
• Simplified use of App servers

6 Copyright © 2023, Oracle and/or its affiliates

Martin Fowler
https://martinfowler.com/bliki/MicroservicePremium.html

The micro apps approach
will incur overhead, but
less than all out
microservices

Question – How do we decide if whether
we can and should transition?

µ-service needs engineering discipline – if
we have that culture – then from the outset
– will this give us longer as an operable
monolith?

To work with development processes – Dev |Git|AI|Sec| Ops ?

• µ-services is an architectural principle – not tools or processes
• {x}Ops is an organizational approach, processes supported by tools
• It is easy to link to {x}Ops with microservices as they’ve evolved in the same timeframe
• µ-services complexity have driven {x}Ops requirements
• People also confuse CI/CD with {x}Ops

7 Copyright © 2023, Oracle and/or its affiliates

OpenAI

S e c

Question – What prevents us applying these ideas to our existing solutions?

When looking at µ-services – have we related back to our biz needs?

• Are we being slowed down?
• Is the development process ineffective?
• Code is maintainable – changing architecture wont fix this
• Are the governance controls and organizational decisions the source of breaks on deployment

speed?
• Ability to modernize at lightspeed?

• Apply change and improvement
• Meet new business needs

• Scalability – what scaling demands exist?
• Is demand really unpredictable (or is it the business and IT not communicating)?
• Demand fluctuates unpredictably – automate and dynamically respond – when should we stop

the scaling?
• Resilience what do we want?

• Consider monitoring and prevention à as prevention is always better than cure
• Secure and safe

8 Copyright © 2023, Oracle and/or its affiliates

Question – What are we looking for with software development?

Challenges of adopting µ-services

microservice

microse
rvice

microservice

microserv
ice

Culture
• Your strategy may be to build and

deliver through microservices BUT
…

• If your culture isn’t oriented to
support the ways of working to be
effective e.g.
• No collaboration for cross-cutting

concerns
• Tech silo rather than domain

aligned
• Microservices without a culture of

automation will be like spinning
plates

10 Copyright © 2023, Oracle and/or its affiliates

Design complexity

• Distribution will result in more layers
• Abstraction and separation of layers –

increases complexity
• The smallest component is the

simplest
• The big picture becomes more

complex
• Whatever we do we still need to address

…
• Data consistency & integrity
• End-to-end understanding of what is

happening – as more different parts
are involved

• Increased re-use means potential for
greater impact for change

• Big ball of mud + µ-service = Big ball of
mud2

11 Copyright © 2023, Oracle and/or its affiliates

https://androidxhunter.w
ordpress.com

/2017/
03/10/the-big-ball-of-m

ud-antipatten/

Skills

• Operational tooling and processes
• DevOps
• Automate as far as ROI allows

• Understanding of many layers
• Development can become polyglot

– but how polyglot can you
manage

• Polyglot development means
differing development processes

• Organization – make sure
Conway’s law isn’t going to bite

• There is no substitute for good
engineering practices

12 Copyright © 2023, Oracle and/or its affiliates

Host Servers

Container Mgmt &
Orchestration

• Multiple development languages
• Multiple libraries & lib config

ContainerContainer

App Svr App Svr

Service

Service

Service

O
perational Stack

Service Layers
• Service Mesh – Isto/Linkerd

etc
• Async comms options (Kafka)
• Certificate management

• Multiple runtimes e.g. micro profile
• Authz frameworks

• Container technologies
Docker

• Open Container Initiative
• Kubernetes and its APIs
• Networking (Flannel, Calico),

IP management, load
balancing

• Storage (CSI, Portwork etc)
• OS optimization
• OS security with CSA, NIST etc

• Grafana
• Prometheus,
• Analytics platforms
• Alerting &

Notification
channels

µ-service – a challenging & risky journey

13 Copyright © 2023, Oracle and/or its affiliates

Sam Newman

Experience from using µ-services

14 Copyright © 2023, Oracle and/or its affiliates

https://www.ibm.com/downloads/cas/OQG4AJAM

https://www.oreilly.com/radar/microservices-adoption-in-2020/

The experience reported …

15 Copyright © 2023, Oracle and/or its affiliates

https://www.oreilly.com/radar/
microservices-adoption-in-2020/

Microservices in the enterprise, 2021:
Real benefits, worth the challenges
https://www.ibm.com/downloads/cas/OQG4AJAM

µ-services and
back

Istio becomes monolithic Istiod

Separate services of …
• Pilot (Traffic Management)
• Citadel (Certificates & Secrets management)
• Galley (Configuration management)
• Mixer (Policy & Telemetry – deprecated as part of v1.5)
Consolidated into Istiod, providing all the capabilities of Pilot,
Citadel & Galley.
• Proxy’s talk to daemon on the control plane.
• Modular design maintained

17 Copyright © 2023, Oracle and/or its affiliates

Istio 1.2
Istio 1.17

Real-world example - Segment

Segment – a data analytics platform, now part of Twilio
• Adopted microservices to help with fault isolation and aid observability
• Saw initial benefits in delivery, but …
Problems came from
• Operational overhead of the microservices
• Many services had a functional commonality – addressed by building

libraries, BUT that slowed development – testing took longer
• Forking code base undermined maintainability
Consolidated this area of code – based found the still have productivity
and high performance

18 Copyright © 2023, Oracle and/or its affiliates

https://www.infoq.com/news/2020/0
4/microservices-back-again/
Thanks to Alexandra Noonan for
sharing the story

"If microservices are implemented incorrectly or used as a band-aid without addressing some of
the root flaws in your system, you'll be unable to do new product development because you're

drowning in the complexity.“

Real-world examples

ShopKeep (part of Lightspeed)
• Classic microservices story – building monolith – worked fine until

hit issues of scaling
• 1st attempt failed –

• Did’t get properly grasp challenges that monolith had
• If monolith architecture has lost cohesion and quality – what

chance will you microservices have?
• 2nd time around –

• Tried to bite too much off at once
• Partitioned the wrong way – resulting in tightly coupled

services

19 Copyright © 2023, Oracle and/or its affiliates

https://www.youtube.com/watch?v=0jODVkkwiMc

InVision
• Issue of people/process than technical – with release pipeline not

quick enough
• Conway’s law bit – team to support ‘legacy’ steadily accumulated

microservices – small team – lots of small discrete pieces of
functionality for a small team – increasingly impractical

Thanks to Ben Nadel for sharing the story
https://www.bennadel.com/blog/3944-why-ive-
been-merging-microservices-back-into-the-
monolith-at-invision.htm

Thanks to Paddy Carey for sharing the story

Amazon!!

• Some of these headlines are a bit clickbait BUT
• Background …

• Needed service to examine video for
encoding & audio sync errors

• Solution too slow & costly
• Elected to use Lambda and Step Functions
• Organization with a culture that gets

microservices
• In my opinion …

• Technology before design – wrong way
around

• Cost issues could have been spotted with a
bit of strategic thinking

20 Copyright © 2022, Oracle and/or its affiliates

Strategies to
minimize monolith
challenges, Cohabit

& transition

Internal API Gateways and Message brokers – Enabling Anti-corruption
layer to help protect modularity

22 Copyright © 2023, Oracle and/or its affiliates

We can consider using internal API gateway(s) to …
• Enforce rate limiting to avoid possible runway processes

swamping you with API calls
• Capture usage data for billing, cross-charging, and demand

forecasting
• Creating points of abstraction

• Gateways can mask changes in deployment for
consumers

• Enforce loose coupling – some APIs are intended
operational purposes NOT for others to build new
applications against

• Gateway as a focus of security management
• Provide easier points for measuring utilization (investment

value)
• Use of Gateway can be used to support …

• Enforcement of design & development approaches
• API First (developing contract visibility etc)

Service Mesh proxy for monoliths

• Service mesh helps development & operations by …
• Abstracting and routing traffic between end-points
• Securing traffic between endpoints (Authz, encryption

…)
• Observability & monitoring
• Extensibility - Extend proxies with WASM

• Nothing here unique to a µ-services, so…
• Deploy Envoy proxy in front of Monolith
• Proxy needs to talk to Istiod
• Monolith will appear to all services in the same manner

• This strategy is well-developed and proven
• BookInfo demo app includes Istio with a VM deployment
• Standard Istio documentation includes VM deployment

guide
• Reference case with Bluecore

23 Copyright © 2023, Oracle and/or its affiliates

Typical Istio architecture …

Istio architecture with Monoliths …

Good design aka modular monolith …

• We can still apply good design principles …
• Domain Driven Design
• Design Patterns such as Inversion of Control
• API First

• Exploit language modularization features and
decoupling
• OSGi (Apache Felix, Celix …)
• Python packages
• Go Modules ….

• Automate, automate, automate …
• Just because we’re not deploying as small

microservices doesn’t mean we can’t reap the
rewards of automation

• Load balancing + active monitoring instead of
Kubernetes health management

24 Copyright © 2023, Oracle and/or its affiliates

Evolutionary Architecture

• Develop and measure fitness functions – use
metrics to guide incremental change
• Metrics more than dev/unit testing

• If the organization is adversely impacting
architecture – Inverse Conway’s Law Maneuver
• Cross-functional teams
• Inter team communication
• Product over project

• Changes are always small increments keeping
system stability.

• Identify redundant functionality/dead code and
remove

• Bounded context views when overlayed with
implementation will help identify journey

• Cross contexts using APIs/Messaging etc

25 Copyright © 2022, Oracle and/or its affiliates

https://continuousdelivery.com
/im

plem
enting/architecture/

Culture of Discipline – Structured Monolith that can be (de)composed

26 Copyright © 2022, Oracle and/or its affiliates

Tools like ArchUnit/ArchUnitNet (xUnit extension) can be used
to flag abuse of module boundaries..

• Unit tests can ensure code modularity is respected
• Does need discipline to create tests

Tools like JDepend will help identify coupling

Software Bill of Material (SBOM) tooling to help control
dependencies…

• Primary goal is to support Supply Chain issues, which can
also help with modularity

• Smaller dependencies can point to control of coupling
• Needs your code to be built as modules
• Need to have SBOM analysis/visualization to help

Container Instances

• Container Instances service – available from most
hyperscalers
• Deploy solutions from a container e.g. Docker
• Could view Container is largely an installation

abstraction (i.e. replace MSI, .DEB, RPM mechanisms)
• Include monitoring, auto restart, etc.
• None of the complexity of K8s

• Use of containers – create the opportunity for some
isolation – can serve as a stepping stone to µ-service

27 Copyright © 2022, Oracle and/or its affiliates

Adopt µ-service tools without tearing apart your monolith

• Verrazano (similar solutions VMWare Tanzu, Google Anthos
etc)
• Containers are your installation tech
• Tools to help containerize and deploy monoliths
• Completely Open Source – curated tech stack designed to

support Monolith (e.g., WebLogic – J2EE workloads) and
services

• Deploying all the different building blocks is addressed for
you e.g., Istio, Keycloak, setting up monitoring ….

• CNCF projects can work with Monoliths e.g.
• Fluentd, Fluentbit – deploy anywhere (Fluentbit’s origins

are IoT)
• Grafana & Prometheus can be deployed anywhere – its just

software
• So we adopt a lot of µ-service tools and techniques in a

more incremental manner

28 Copyright © 2022, Oracle and/or its affiliates

Conclusion

29 Copyright © 2023, Oracle and/or its affiliates

• Applying µ-services can be hard, and failing is easy …
• Even the best have got it wrong
• We think about technology – but we need to have our organization, culture … in order

• µ-services are an amplifier
• µ-services aren’t the goal – business value is the goal - µ-services is a way to get there
• You don’t need to be building µ-services to benefit from cloud-native technologies
• Monoliths can cohabit and participate with microservices
• Adaption of a Martin Fowler quote – don’t start with µ-services UNLESS there is a clear immediate

business need. DO start with MODULARITY. Move to microservices when you’re in good health
and need it

balls of mud are BADMonoliths are Okay
µ-services are Okay

µ-service NOT a fix
for poor practice &

org issues

30

Questions & goodies…

Thank you

Copyright © 2023, Oracle and/or its affiliates

Phil Wilkins
Cloud Developer Evangelist

Philip.Wilkins@Oracle.com
http://bit.ly/odevrel_slack @Phil Wilkins

mp3monster.org /
cloud-native.info / oracle-integration.cloud
linkedin.com/in/philwilkins
github.com/mp3monster
@mp3monster

