The following isn’t unique to OCIR, as it will hold true for any K8s Deployment YAML configuration that works with an Open Container Initiative compliant registry. To define the containers part of the YAML file we need to provide an attribute that can be used to confirm the legitimacy of the request. To do this we need to supply a token. However, we don’t want this token to be visible in plain sight in our YAML. The solution to this is to set up a secret within Kubernetes.
In the following YAML extract, we can see the secret is named.
This does mean we need to create the secret. As this is a one-off task the easiest step is to create the secret by hand. To do that we use the command:
This naturally leads to the next question where do we get the secret?
This step is straightforward. Navigating using the user icon top right (highlighted in the screenshot below), select the User Settings option to get to the screen shown below. Then use the right-hand menu option highlight (Auth Tokens). This displays a section of the UI showing your current auth tokens and provides a button that will popup a window to guide you through creating a new auth token.
A container registry is as essential as a Kubernetes service as you want to manage the deployable resources. That registry could be the public Docker repository or something else. In most people’s cases, the registry needs to be private as you don’t want to expose your product assets to potential external tampering. As a result, we need a service such as Oracle’s container registry OCIR.
The re of this blog is going to walk through how to push a container you’ve built into OCIR and a gotcha that can trip up users if you make assumptions about how the registry works.
Build container
Let’s assume you’re building your microservices locally or retrieving vetting 3rd party services for use. In both cases, you want to manually push your assets into OCIR manually rather than have an automated build pipeline do it for you.
This creates a container locally, and we can see the container listed using the command:
docker images
Setup of OCIR
We need an OCIR to target so the easiest thing is to manually create an OCIR instance in one of the regions, for the sake of this illustration we’ll use Ashburn (short code is IAD). To help with the visibility we can put the registry in a separate compartment as a child of the root. Let’s assume we’re going to call the registry GraphQL. So before creating your OCIR set up the compartment as necessary.
fragment of the compartment hierarchy
In the screenshot, you can see I’ve created a registry, which is very quick and easy in the UI (in the menu it’s in the Developer Services section).
The Oracle meu to navigate to the OCIR servicethe UI to create a OCIR
Finally, we click on the button to create the specific OCIR.
Deployment…
Having created the image, and with a repo ready we can start the steps of pushing the container to OCIR.
The next step is to tag the created image. This has to be done carefully as the tag needs to reflect where the image is going using the formula <region name>/<tenancy name/<registry name>:<version>. All the registries will be addressed by <region short code>.ocir.io In our case, it would be iad.ocir.io.
docker tag graph-svr:latest iad.ocir.io/ociobenablement/graphql-svr:v0.1-dev
As you may have realized the tag being applied effectively tells OCI which instance of OCIR to place the container in. Getting this wrong can be the core of the gotcha previously mentioned and we’ll elaborate upon it shortly.
To sign in you’ll need an auth token as that is passed as the password. For simplicity, I’ve passed the token in the docker command, which Docker will warn you of as being insecure, and suggest it is passed in as part of a prompt. Note my token will have been changed by the time this is published. The username is built on the structure of <cloud tenancy name>/identitycloudservice/<username>. The identitycloudservice piece only needs to be included for your authentication is managed through IDCS, as is the case here. The final bit is the URI for the appropriate regional OCIR address, as we’ve used previously.
With hopefully a successful authentication response we can push the container. It is worth noting that the Docker authenticated connection will timeout which is why we’ve put everything in place before connecting. The push command is very simple, it is the tag name assigned to the artifact including the version number.
When we deal with repositories from Git to SVN or Apache Archiva to Nexus we work with a repository that holds multiple different assets with multiple versions of those assets. as a result, when we identify an asset uniquely we would expect to name things based on server/location, repository, asset name, and version. However, here each repository is designed for one type of asset but multiple versions. In reality, a Docker repository works in the same manner (but the extended path impact is different).
This means it becomes easy to accidentally define a tag with an extra element. Depending upon your OCI tenancy privileges if you get the path wrong, OCI creates a new root compartment container repository with a name that is a composite of the name elements after the tenancy and puts your artifact in that repository, not the one you expected.
We can address this in several ways, first and probably the best option is to automate the process of loading assets into OCIR, once the process is correct, it will remain correct. Another is to adopt a principle of never holding repositories at the root of a tenancy, which means you can then explicitly remove the permissions to create repositories in that compartment (you’ll need to explicitly grant the permissions elsewhere in the compartment hierarchy because of policy inheritance. This will result in the process of pushing a container to fail because of privileges if the tag is wrong.
Visual representation of structure differences
Repository Structure
Registry Structure
Condensed to a simple script
These steps can be condensed to a simple platform neutral script as follows:
This script would need modifying for each container being built, but you could easily make it parameterized or configuration drive.
A Note on Registry Standards
Oracle’s Container Registry has adopted the Open Registries standard for OCIR. Open Registries come under the Linux Foundation‘s governance. This standard has been adopted by all the major hyperscalers (Google, AWS, Azure, etc). All the technical spec information for the standard is published through GitHub rather than the main website.
This isn’t the first time I’ve written about the Oracle Cloud SDK (check here), but it seems rather fitting, as some of the utilities I’ve been working on are open to the community, and #JoelKallmanDay is all about community. If you’d like to know more about #JoelKallmanDay then checkout Tim Hall’s blog here.
Oracle have provided a very rich API and then overlaid it with a number of SDKs in Python, Java etc. The SDKs immediately remove the work of creating connections and correct payloads. Taking the Python SDK for example, all I need to do is create a standard configuration file with all the necessary connection properties to my OCI instance. Then it’s simply a case of creating the correct Python object for the correct group of services wanted. Then it’s down to populating the object attributes. This is the illustration of exactly what a good SDK does. I can lean on my IDE to use the correct set and get operators. The code for establishing a connection is done for me.
What I’ve found most striking is the level of consistency in the methods provided by the SDK regardless of the service. This makes it very easy to develop functionality without needing to check every API before I can write any code. it would be easy to say, so what. But when you look at the breadth of the OCI services it becomes more impressive.
The convenience doesn’t end there. Rather than having to run your utilities from a local command line (Python means we’re pretty much OS agnostic), the Oracle Cloud shell is preconfigured with Python, OCI SDK, GitHub and FTP server and basic Linux text editors. The all amounts to the fact that you can use your scripts/tools from within the web UI of OCI. Edit your credentials file locally, push and pull any changes to the scripts from the shell and any Git repo such as GitHub.
With this insight, we just need to build that catalogue of accelerator tools to make those repetitive processes just a little easier. For example ensuring that when you tear down your manually created services all interlinked entities are deleted first (which can be troublesome with policies, groups, compartments and so on).
You must be logged in to post a comment.