We could solve this with custom integrations, or we can exploit an IETF standard called SCIM (System for Cross-domain Identity Management). The beauty of SCIM is that it brings a level of standardization to the mechanics of sharing personal identity information, addressing the fact that this data goes through a life cycle.
While Oracle’s IDCS and IAM support identity management for authentication and authorization for OCI and SaaS such as HCM, SCM, and so on. Most software ecosystems need more than that. If you have personalized custom applications or COTS or non-Oracle SaaS that need more than just authentication and need some of your people’s data needs to be replicated.
The lifecycle would include:
Creation of users.
Users move in and out of groups as their roles and responsibilities change.
User details change, reflecting life events such as changing names.
Users leave as they’re no longer employees, deleted their account for the service, or exercise their right to be forgotten.
It means any SCIM-compliant application can be connected to IDCS or IAM, and they’ll receive the relevant changes. Not only does it standardize the process of integrating it helps handle compliance needs such as ensuring data is correct in other applications, that data is not retained any longer than is needed (removal in IDCS can trigger the removal elsewhere through the SCIM interface). In effect we have the opportunity to achieve master data management around PII.
SCIM works through the use of standardized RESTful APIs. The payloads have a standardized set of definitions which allows for customized extension as well. The customization is a lot like how LDAP can accommodate additional data.
The value of SCIM is such that there are independent service providers who support and aid the configuration and management of SCIM to enable other applications.
Securing such data flows
As this is flowing data that is by its nature very sensitive, we need to maximize security. Risks that we should consider:
Malicious intent that results in the introduction of a fake SCIM client to egress data
Use of the SCIM interface to ingress the poisoning of data (use of SCIM means that poisoned data could then propagate to all the identity-connected systems).
Identity hijacking – manipulating an identity to gain further access.
There are several things that can be done to help secure the SCIM interfaces. This can include the use of an API Gateway to validate details such as the identity of the client and where the request originated from. We can look at the payload and validate it against the SCIM schema using an OCI Function.
We can block the use of operations by preventing the use of certain HTTP verbs and/or URLs for particular or all origins.
The last week or so has been the DeveloperWeek 23 Conference – in Hybrid form, with the physical event last week and online this week. Circumstances prevented me from attending physically, but yesterday I was honored with the opportunity to present virtually. My session covered the adoption of API Streaming as an alternative approach to needing to poll with APIs to get the latest data state/updates.
We’ve been busy putting together a number of Oracle Architecture Center assets over the last week. This has included building LogSimulator extensions that can either be run in a very simple manner using just a single file, but limited in the payloads that can be sent to OCI (if you take the appropriate custom file from the LogSimulator you do need to make one minor tweak. But the code has also been added to the Oracle GitHub repository here in a manner that doesn’t require the full tool. There of course a price to pay for the simplified implementation. This comes in the form of the notifications being sent and received being hardwired into the code rather than driven through the insulator’s configuration options.
The decoupling has been done by implementing the interface for the custom methods in a class without the implements declaration, and then we extend the base class and apply the implements declaration at that level.
While notifications could take log events, it is more suited to JSON payloads. But as the simulator can tailor the content being sent using some formatting, it does not care if the provided events to send are pre-formatted as JSON objects making it an easy tool to test the configuration of OCI Notifications.
Unit testing as well
In addition to the new channel, as previously mentioned we have been making some code improvements. To support that we have started to add unit tests, and double checking code will compile under Java. To keep the dependencies down we’re making use of Java assert statements rather than a pretty JUnit. But the implementation ideas are very similar. As the tests use Java asserts the use of asserts does need to be enabled in the command line; for example:
Those who have been using my Logging in Action book will know that to help test the configuration of monitoring tools including Fluentd we have built a LogGenerator that can very easily play and replay logging events into a variety of destinations and formats. all written in Groovy to make the utility easy to run as a script and extend without needing to set up a proper Java development environment.
With the number of different destinations built into the script and the logic to load the source log events and format them the utility is getting rather large for a single file. Rather than letting it continue to grow as we add more destinations to pump log events too, I’ve extended the implementation so you can point to a Groovy file that implements the logic to send the log events. It only requires three simple methods to be implemented.
To demonstrate the feature we have created a custom extension and fully documented it. The extension allows you to send log events to the OCI Logging service. This includes an optional crude aggregation mechanism as sending individual log events is a little inefficient over REST. By doing this we can send synthetic or playback logs as if we’re an application in real-life to ensure that any alerting or routing for the logging works properly before we get anywhere production and do not need to run the application and induce error events.
Beyond this, we’re also thinking about creating a plugin to fire log events at Prometheus so we can send events using the Prometheus pushgateway. As a result, we can tune Prometheus’ configuration.
More improvements – refactoring the existing code
We will refactor the existing code to use the same approach which should make the code more maintainable, but the changes won’t stop the utility from working as it always has (so we won’t break out the existing output channels from the core).
We have also started to improve the code commenting – so hopefully it will make the code a bit more navigable.
One of the areas I present publicly is the use of Fluentd. including the use of distributed and multiple nodes. As many events have been virtual it has been easy to demo everything from my desktop – everything is set up so I can demo things very easily. While doing this all on one machine does point to how compact and efficient Fluentd is as I can run multiple instances concurrently it does undermine distributed capabilities somewhat.
Add to that I now work for Oracle it makes sense to use OCI resources. With that, I have been developing the scripts to configure Ubuntu VMs to set up the demo environments installing Ruby, Fluentd, and various gems needed and pulling the relevant configurations in. All the assets can be found in the GitHub repository https://github.com/mp3monster/logging-demos. The repository readme includes plenty of information as well.
While I’ve been putting this together using OCI, the fact that everything is based on Ubuntu should mean it can be run locally on VMs, WSL2, and adaptable for MacOS as well. The environment has been configured means you can still run on Ubuntu with a single node if desired.
Additional Log Destinations
As the demo will typically be run on OCI we can not only run the demo with a multinode setup, we have extended the setup with several inclusion files so we can utilize OCI services OpenSearch and OCI Log Analytics. If you don’t want to use these services simply replace the contents of several inclusion files including files with the contents of the dummy_inclusion.conf file provided.
Representation of the Demo setup
The configuration works by each destination having one or two inclusion files. The files with the postfix of label-inclusion.conf contains the configuration to direct traffic to the respective service with a configuration that will push log events at a very high frequency to the destination. The second inclusion file injects the duplication of log events to each service. The inclusion declarations in the main node Fluentd config file references an environment variable that should provide the path to the inclusion file to use. As a result, by changing the environment variable to point to a dummy file it becomes possible o configure out the use of one of the services. The two inclusions mean we can keep the store declarations compact and show multiple labels being used. With the OpenSearch setup, we have a variant of the inclusion file model where the route inclusion can reference the logic that we would use in the label directly within the sore declaration.
The best way to see the use of the inclusions is to experiment with setting the different environment variables to reference the different files and then using the Fluentd dry-run feature (more on this in the book).
Setup script
The setup script performs a number of tasks including:
Pulling from Git all the resources needed in terms of configuration files and folders
Retrieving the necessary plugins against the possibility of their use.
Setting up the various environment variables for:
Slack token
environment variables to reference inclusion files
shortcut environment variables and aliases
network (IP) address for external services such as OpenSearch
Setting up a folder for OCI tokens needed.
Setting up temp folders to be used by OCI Plugins as a file-based cache.
Feeding the log analytics service is a more complex process to set up as the feeds need to have metadata about the events being ingested. The downside is the configuration effort is greater, but the payback is that it becomes easier to extract meaningful information quickly because the service has a greater understanding of the content. For example, attributing the logs to a type of source means the predefined or default log formats are immediately understood, and maximum meaning can be retrieved from the log event.
Going to OCI Log Analytics does cut out the need for the Connections hub, which would allow rules and routing to be defined to different OCI services which functionally can help such as directing log events to PagerDuty.
I’ve been a fan of Railroad syntax diagrams for a long time. I’ve always found them an easy way to understand the syntactical options and the reserved/keywords in an efficient manner.
Example of Railroad Syntax diagram
I have been digging around in the documentation to find a keyword in the OCI Policies syntax that the common cases don’t use. After a bit of rooting around, I found what I needed. But a Railroad representation would have helped me get the expression correct effortlessly and without so much effort.
Once I solved my problem, I decided to see if I could find something that could easily create the railroad diagrams and encountered a fantastic bit of code on GitHub from Tab Atkins Jr. It’s a neat bit of JavaScript, which can even be run from their GitHub pages – go here. Tab has taken the time to document the tool well, so working out the syntax to define the diagram is straightforward (not that you need to read it much as the tool is well written).
The following diagrams show the syntax for writing OCI Policies in a single image and with the full syntax broken into 2 images to make it a little easier to read on the screen. But also address the fact often you don’t need the Where clause.
If the diagrams need to be updated the source to use with the tools is in my GitHub repository. But a really cool feature of the utility is that the information to populate the editor view is included in the URL (does make for a long URL) but it means this link will take you directly to the view & editor if you want to tinker with the definition. So the links are:
The following isn’t unique to OCIR, as it will hold true for any K8s Deployment YAML configuration that works with an Open Container Initiative compliant registry. To define the containers part of the YAML file we need to provide an attribute that can be used to confirm the legitimacy of the request. To do this we need to supply a token. However, we don’t want this token to be visible in plain sight in our YAML. The solution to this is to set up a secret within Kubernetes.
In the following YAML extract, we can see the secret is named.
This does mean we need to create the secret. As this is a one-off task the easiest step is to create the secret by hand. To do that we use the command:
This naturally leads to the next question where do we get the secret?
This step is straightforward. Navigating using the user icon top right (highlighted in the screenshot below), select the User Settings option to get to the screen shown below. Then use the right-hand menu option highlight (Auth Tokens). This displays a section of the UI showing your current auth tokens and provides a button that will popup a window to guide you through creating a new auth token.
In a previous blog (here) I wrote about the structure and naming of assets to be applied to OCIR. What I didn’t address is the interesting challenge of what if my development machine has a different architecture to my target environment. For example, as a developer, I have a nice shiny Mac Book Pro with the M1 chipset which uses an ARM architecture. However, my target cloud environment has been built and runs with an AMD64 chipset? As we’re creating binary images it does raise some interesting questions.
As we’re creating our containers with Docker, this addresses how to solve the problem with Docker. Other OCI Compliant containers will address the problem differently.
Buildx
Buildx is a development feature in Docker which makes use of a cross-platform build capability. When using buildx we can specify one or more build platform types. These are specified using the –platform parameter. In the code below we use it to define the Linux AMD64 architecture mentioned (linux/amd64). But we can make the parameter a comma-separated list targeting different platform types. When that is done, multiple images will be built. By default, the build will happen in sequence, but it is possible to switch on additional process threads for the Docker build process to get the build process running concurrently.
Unlike the following example (which is only intended for one platform, if you are building for multiple platforms then it would be recommended that the name include the platform type the image will work for. For production builds we would promote that idea regardless, just as we see with installer and package manager-related artifacts.
If you compare this version of the code to the previous blog (here) there are some additional differences. Now I’ve switched to setting the target tag as part of the build. As we’re not interested in hanging onto any images built we’ve included the target repository in the build statement. Immediately push it to OCIR, after all the images won’t work on our machine.
A container registry is as essential as a Kubernetes service as you want to manage the deployable resources. That registry could be the public Docker repository or something else. In most people’s cases, the registry needs to be private as you don’t want to expose your product assets to potential external tampering. As a result, we need a service such as Oracle’s container registry OCIR.
The re of this blog is going to walk through how to push a container you’ve built into OCIR and a gotcha that can trip up users if you make assumptions about how the registry works.
Build container
Let’s assume you’re building your microservices locally or retrieving vetting 3rd party services for use. In both cases, you want to manually push your assets into OCIR manually rather than have an automated build pipeline do it for you.
This creates a container locally, and we can see the container listed using the command:
docker images
Setup of OCIR
We need an OCIR to target so the easiest thing is to manually create an OCIR instance in one of the regions, for the sake of this illustration we’ll use Ashburn (short code is IAD). To help with the visibility we can put the registry in a separate compartment as a child of the root. Let’s assume we’re going to call the registry GraphQL. So before creating your OCIR set up the compartment as necessary.
fragment of the compartment hierarchy
In the screenshot, you can see I’ve created a registry, which is very quick and easy in the UI (in the menu it’s in the Developer Services section).
The Oracle meu to navigate to the OCIR servicethe UI to create a OCIR
Finally, we click on the button to create the specific OCIR.
Deployment…
Having created the image, and with a repo ready we can start the steps of pushing the container to OCIR.
The next step is to tag the created image. This has to be done carefully as the tag needs to reflect where the image is going using the formula <region name>/<tenancy name/<registry name>:<version>. All the registries will be addressed by <region short code>.ocir.io In our case, it would be iad.ocir.io.
docker tag graph-svr:latest iad.ocir.io/ociobenablement/graphql-svr:v0.1-dev
As you may have realized the tag being applied effectively tells OCI which instance of OCIR to place the container in. Getting this wrong can be the core of the gotcha previously mentioned and we’ll elaborate upon it shortly.
To sign in you’ll need an auth token as that is passed as the password. For simplicity, I’ve passed the token in the docker command, which Docker will warn you of as being insecure, and suggest it is passed in as part of a prompt. Note my token will have been changed by the time this is published. The username is built on the structure of <cloud tenancy name>/identitycloudservice/<username>. The identitycloudservice piece only needs to be included for your authentication is managed through IDCS, as is the case here. The final bit is the URI for the appropriate regional OCIR address, as we’ve used previously.
With hopefully a successful authentication response we can push the container. It is worth noting that the Docker authenticated connection will timeout which is why we’ve put everything in place before connecting. The push command is very simple, it is the tag name assigned to the artifact including the version number.
When we deal with repositories from Git to SVN or Apache Archiva to Nexus we work with a repository that holds multiple different assets with multiple versions of those assets. as a result, when we identify an asset uniquely we would expect to name things based on server/location, repository, asset name, and version. However, here each repository is designed for one type of asset but multiple versions. In reality, a Docker repository works in the same manner (but the extended path impact is different).
This means it becomes easy to accidentally define a tag with an extra element. Depending upon your OCI tenancy privileges if you get the path wrong, OCI creates a new root compartment container repository with a name that is a composite of the name elements after the tenancy and puts your artifact in that repository, not the one you expected.
We can address this in several ways, first and probably the best option is to automate the process of loading assets into OCIR, once the process is correct, it will remain correct. Another is to adopt a principle of never holding repositories at the root of a tenancy, which means you can then explicitly remove the permissions to create repositories in that compartment (you’ll need to explicitly grant the permissions elsewhere in the compartment hierarchy because of policy inheritance. This will result in the process of pushing a container to fail because of privileges if the tag is wrong.
Visual representation of structure differences
Repository Structure
Registry Structure
Condensed to a simple script
These steps can be condensed to a simple platform neutral script as follows:
This script would need modifying for each container being built, but you could easily make it parameterized or configuration drive.
A Note on Registry Standards
Oracle’s Container Registry has adopted the Open Registries standard for OCIR. Open Registries come under the Linux Foundation‘s governance. This standard has been adopted by all the major hyperscalers (Google, AWS, Azure, etc). All the technical spec information for the standard is published through GitHub rather than the main website.
Before joining Oracle I used to typically refer to a couple of key resources from Oracle – docs.oracle.com, and occasionally developer.oracle.com and ateam-oracle.com. We’d obviously use cloud.oracle.com and the main oracle.com to be able to reference published stats, success references etc. Now I’m part of the company and working in the OCI product team with an outbound side of things, I needed to gem up on all the assets that exist. So that we can help contribute, and ensure that they are up to date etc. In doing so, the number of resources available is so much more than I’d realized.
Upon reflection, this may have been from the fact we didn’t drill down deeply enough, also in part that Capgemini has its own approaches and strategies as well.
This in part is linked to the organizational structures e.g. OCI Product Management’s outbound work overlaps with the Marketing Developer Relations, for example, something that is inevitable in an organization that provides such a diverse portfolio of products.
For my own benefit, and for others to exploit, the following table summarises the different areas of information. The nature of the content and – where content overlaps or is presented in different ways.
We’ve moved this content so it can be easily revised to here (and accessible from the site menu). But also available here …
The members of this team are the ‘gurus’ of product applications. These cover a range of domains – structured in a similar way to blogs.oracle.com with different posts. These posts represent patterns and solutions to problems encountered by the team. How to, or not to implement things. This can overlap with some blogs in so far as both product blogs and A-Team blogs may address how to leverage product features.
Developer relations lead, which covers not only Oracle products but also the application of open source. By its very name, there is a strong emphasis on coding (rather than low-code) covering not just Java but .Net languages such as C#, Node, JavaScript, and so on. There is some content overlap here with the Architectural Center, where Architecture Centre provides reference solutions.
Developer relations lead, which covers not only Oracle products but also the application of open source. By its very name, there is a strong emphasis on coding (rather than low-code) covering not just Java, but .Net languages such as C#, Node, JavaScript, and so on. There is some content overlap here with the Architectural Center, where Architecture Centre provides reference solutions.
This is the Architecture Center which provides reference solutions. But these aren’t exclusive to the SaaS products (which would be easy to interpret). A lot of examples cover deploying and running open-source solutions on IaaS, for example, Drupal, WordPress, and Magento to name just a couple. A lot of these are backed up with scripts, Terraform, and code to achieve the deployment and configuration. In addition to this, there are use cases of what customers have deployed into production (known as built and deployed).
This contains a lot of free tutorials and labs that can be taken a run to implement different things, from deploying a Python with Flask solution on Kubernetes to Creating USB Installation Media for Oracle Linux with Fedora Media Writer. As you can see from these examples, the tutorials cover both Oracle products and open source. These resources interlink with the Architecture Centre and can overlap with developer.oracle.com.
This contains the code artifacts developed by Developer Relations and the Architecture Center team. So covers Reference Architectures, tutorials, and Live Labs all freely available to use.
This provides a catalog of links to the various open-source repositories available. This includes oracle-sample and devrel but also the many other projects including, but not limited to Helidon, Fn, Verrrazano, GraalVM, Apiary
This is really for the educational community (Universities, Colleges & Schools) and provides resources to take you from zero to certified skills for Java and Oracle Database.
This provides a catalog of links to the various open-source repositories available. This includes oracle-sample and devrel but also many other projects including, but not limited to Helidon, Fn, Verrrazano, GraalVM, Apiary
YouTube training videos. With multiple channels based on different technologies.
Java (OpenJDK and Oracle JDK)
A number of Oracle open-source projects have their own independent web resources as well. Helidon includes additional technical resources. The ones we know more about are : Helidon, Fn, Verrrazano, GraalVM, Apiary But it includes references to Java core language etc.
Managed by Jurgen Kress (Prod Mgr for Oracle PaaS). It acts as an aggregator for contributions from the community and shares news about what is happening within Oracle to support customers and partners in the PaaS space.
Perhaps not access usable as documentation, how-to, etc. but Podcasts can yield a lot of broad picture insights. Oracle has a range of podcasts covering a diverse range of subjects. Not all podcasts are active at any one time. But the site provides a catalog and episode list.
You must be logged in to post a comment.